Assuma o filtro IIR de primeira ordem: yn alfa xn (1 - alfa) yn - 1 Como posso escolher o parâmetro alpha s. t. O IIR aproxima o melhor possível o FIR, que é a média aritmética das últimas k amostras: Onde n em k, infty), o que significa que a entrada para o IIR pode ser maior do que k e ainda Id gostaria de ter a melhor aproximação da Significa as últimas entradas k. Eu sei que o IIR tem uma resposta de impulso infinita, daí estou procurando a melhor aproximação. Eu estou feliz por uma solução analítica, seja para ou. Como esses problemas de otimização podem ser solucionados, dado o único IIR de 1ª ordem. Perguntou 6 de outubro 11 às 13:15 Precisa seguir yn alfa xn (1 - alfa) yn - 1 precisamente ndash Phonon 6 de outubro 11 às 13:32 Isso é obrigado a se tornar uma aproximação muito pobre. Você pode pagar qualquer coisa mais do que um número de ordem IIR ndash leftaroundabout 6 de outubro 11 às 13:42 Você pode querer editar sua pergunta para que você não use yn para significar duas coisas diferentes, p. A segunda equação exibida poderia ler zn frac xn cdots frac xn-k1, e você pode querer dizer qual é exatamente o seu critério de cotas quanto possível, por exemplo, Você quer que o yn-znvert seja o mais pequeno possível para todos os n, ou vert yn-znvert2 para ser o menor possível para todos os n. Ndash Dilip Sarwate 6 de outubro 11 às 13:45 niaren Eu sei que este é um post antigo, então se você se lembrar: como sua função 39f39 derivou eu codificou uma coisa semelhante, mas usando as funções de transferência complexas para FIR (H1) e IIR (H2 ) E depois fazendo soma (abs (H1 - H2) 2). Eu comparei isso com sua soma (fj), mas obtive diferentes resultados resultantes. Pensei em perguntar antes de arar através da matemática. Ndash Dom Jun 7 13 às 13:47 OK, vamos tentar derivar o melhor: começar yn ampamp alpha xn (1 - alpha) yn - 1 ampamp alfa xn (1 - alfa) alfa xn-1 (1 - alfa) 2 yn - 2 ampamp alpha xn (1 - alfa) alfa xn-1 (1-alfa) 2 alfa xn-2 (1-alfa) 3 yn-3 fim para que o coeficiente de xn-m seja alfa (1-alfa) m . O próximo passo é tomar derivativos e equivaler a zero. Olhando para um enredo do derivado J para K 1000 e alfa de 0 para 1, parece que o problema (como eu configurei) é mal posado, porque a melhor resposta é alfa 0. Eu acho que há um erro aqui. A maneira como deve ser de acordo com os meus cálculos é: usar o código a seguir em MATLAB produz algo equivalente embora diferente: de qualquer forma, essas funções têm mínimo. Então, vamos assumir que realmente nos preocupamos com a aproximação sobre o suporte (comprimento) do filtro FIR. Nesse caso, o problema de otimização é apenas: Soma J2 (alfa) (alfa (1-alfa) m-frac) 2 Traçar J2 (alfa) para vários valores de K versus resultados alfa na data nas parcelas e tabela abaixo. Para K 8. alfa 0.1533333 Para K 16. alfa 0.08 Para K 24. alfa 0.0533333 Para K 32. alfa 0.04 Para K 40. alfa 0.0333333 Para K 48. alfa 0.0266667 Para K 56. alfa 0.0233333 Para K 64. alfa 0.02 Para K 72. alpha 0.0166667 As linhas tracejadas vermelhas são 1K e as linhas verdes são alfa, o valor de alfa que minimiza J2 (alfa) (escolhido de tt alfa 0: .01: 13). Há uma boa discussão sobre este problema no processamento de sinal incorporado com a arquitetura de micro-sinal. Aproximadamente entre as páginas 63 e 69. Na página 63, inclui uma derivação do filtro de média móvel recursiva exata (que Niaren deu em sua resposta), por conveniência em relação à seguinte discussão, corresponde à seguinte equação de diferença: A aproximação Que coloca o filtro na forma que você especificou exige assumindo que x aproximadamente y, porque (e cito a partir da página 68) y é a média das amostras xn. Essa aproximação nos permite simplificar a equação de diferença anterior da seguinte maneira: Configurando alfa, chegamos à sua forma original, y alfa xn (1-alfa) y, que mostra que o coeficiente que você deseja (em relação a essa aproximação) é exatamente 1 (Onde N é o número de amostras). Essa aproximação é a melhor em algum aspecto. É certamente elegante. Heres como a resposta de magnitude se compara a 44,1 kHz para N 3 e como N aumenta para 10 (aproximação em azul): Como a resposta de Peters sugere, aproximar um filtro FIR com um filtro recursivo pode ser problemático sob uma norma de mínimos quadrados. Uma ampla discussão sobre como resolver este problema em geral pode ser encontrada na tese JOSs, Técnicas para Design de Filtro Digital e Identificação do Sistema com Aplicação ao Violino. Ele defende o uso da Norma de Hankel, mas nos casos em que a resposta de fase não importa, ele também cobre o Método Kopecs, que pode funcionar bem neste caso (e usa uma norma L2). Uma ampla visão geral das técnicas na tese pode ser encontrada aqui. Eles podem render outras aproximações interessantes. Signal ProcessingDigital Filters Os filtros digitais são, por essência, sistemas amostrados. Os sinais de entrada e saída são representados por amostras com distância de tempo igual. Os filtros de resposta de Implulgação finita (FIR) são caracterizados por uma resposta de tempo dependendo apenas de um dado número das últimas amostras do sinal de entrada. Em outros termos: uma vez que o sinal de entrada caiu para zero, a saída do filtro fará o mesmo após um determinado número de períodos de amostragem. A saída y (k) é dada por uma combinação linear das últimas amostras de entrada x (k i). Os coeficientes b (i) dão o peso para a combinação. Eles também correspondem aos coeficientes do numerador da função de transferência de filtro do domínio z. A figura a seguir mostra um filtro FIR da ordem N 1: Para os filtros de fase linear, os valores dos coeficientes são simétricos em torno do meio e a linha de atraso pode ser dobrada em volta desse ponto do meio para reduzir o número de multiplicações. A função de transferência de filtros FIR apenas permite um numerador. Isso corresponde a um filtro totalmente zero. Os filtros FIR normalmente requerem pedidos elevados, na magnitude de várias centenas. Assim, a escolha deste tipo de filtros precisará de uma grande quantidade de hardware ou CPU. Apesar disso, uma das razões para escolher uma implementação do filtro FIR é a capacidade de alcançar uma resposta de fase linear, o que pode ser um requisito em alguns casos. No entanto, o designer fiter tem a possibilidade de escolher filtros IIR com uma boa linearidade de fase na banda passante, como os filtros Bessel. Ou para projetar um filtro allpass para corrigir a resposta de fase de um filtro IIR padrão. Filtros médios móveis (MA) Os modelos Editar modelo médio móvel (MA) são modelos de processo na forma: os processos MA são uma representação alternativa dos filtros FIR. Filtros médios Editar Um filtro calculando a média das N últimas amostras de um sinal É a forma mais simples de um filtro FIR, sendo todos os coeficientes iguais. A função de transferência de um filtro médio é dada por: A função de transferência de um filtro médio possui N zeros igualmente espaçados ao longo do eixo de freqüência. No entanto, o zero em DC é mascarado pelo pólo do filtro. Por isso, existe um lóbulo maior, um DC que explica a banda de passagem do filtro. Filtros Integrator-Comb (CIC) em cascata Edit A O filtro integrador-pente em cascata (CIC) é uma técnica especial para a implementação de filtros médios colocados em série. A colocação em série dos filtros médios melhora o primeiro lobo em DC em comparação com todos os outros lóbulos. Um filtro CIC implementa a função de transferência de N filtros médios, cada um calculando a média de amostras R M. Sua função de transferência é assim dada por: os filtros CIC são usados para dizimar o número de amostras de um sinal por um fator de R ou, em outros termos, reescrever um sinal a uma freqüência mais baixa, descartando amostras R 1 de R. O fator M indica quanto do primeiro lobo é usado pelo sinal. O número de estádios de filtro médio, N. Indica quão bem outras bandas de freqüência são amortecidas, à custa de uma função de transferência menos plana em torno de DC. A estrutura CIC permite implementar todo o sistema com apenas agregadores e registros, não usando multiplicadores que sejam gananciosos em termos de hardware. O downsampling por um fator de R permite aumentar a resolução do sinal pelos bits log 2 (R) (R). Filtros canônicos Edit Canonical filters implementam uma função de transferência de filtro com vários elementos de atraso iguais à ordem do filtro, um multiplicador por coeficiente de numerador, um multiplicador por coeficiente de denominador e uma série de elementos de som. De forma semelhante às estruturas canónicas de filtros ativos, esse tipo de circuitos mostrou-se muito sensível aos valores dos elementos: uma pequena alteração em coeficientes teve um grande efeito na função de transferência. Aqui também, o design de filtros ativos mudou de filtros canônicos para outras estruturas, como cadeias de seções de segunda ordem ou filtros de salto. Cadeia de secções de segunda ordem Editar uma seção de segunda ordem. Muitas vezes referido como biquad. Implementa uma função de transferência de segunda ordem. A função de transferência de um filtro pode ser dividida em um produto de funções de transferência associadas a um par de pólos e possivelmente um par de zeros. Se a ordem das funções de transferência for estranha, então uma seção de primeira ordem deve ser adicionada à cadeia. Esta seção está associada ao pólo real e ao zero real se houver um. Forma direta 1 forma direta 2 forma direta 1 transposição de forma direta 2 transposta A forma direta 2 transposta da figura a seguir é especialmente interessante em termos de hardware exigido, bem como a quantificação de sinal e coeficiente. Digital Leapfrog Filters Editar estrutura de filtro Editar filtros de salto digital base na simulação de filtros de salto analógico ativo. O incentivo para esta escolha é herdar das excelentes propriedades de sensibilidade à banda passante do circuito de escada original. O seguinte filtro de 4passões de allpass do allpass do pólo pode ser implementado como um circuito digital, substituindo os integradores analógicos por acumuladores. A substituição dos integradores analógicos por acumuladores corresponde a simplificar a transformada Z em z 1 s T. Quais são os dois primeiros termos da série Taylor de z e x p (s T). Essa aproximação é boa o suficiente para filtros onde a freqüência de amostragem é muito maior do que a largura de banda do sinal. Transferir Função A representação do espaço de estado do filtro precedente pode ser escrita como: A partir deste conjunto de equações, pode-se escrever as matrizes A, B, C, D como: A partir desta representação, as ferramentas de processamento de sinais, como Octave ou Matlab, permitem traçar A resposta de freqüência dos filtros ou para examinar seus zeros e pólos. No filtro de salto digital, os valores relativos dos coeficientes definem a forma da função de transferência (Butterworth. Chebyshev.), Enquanto suas amplitudes definem a freqüência de corte. Dividir todos os coeficientes por um fator de dois desloca a frequência de corte para baixo em uma oitava (também um fator de dois). Um caso especial é o filtro Buterworth de 3ª ordem, que possui constantes de tempo com valores relativos de 1, 12 e 1. Devido a isso, este filtro pode ser implementado em hardware sem qualquer multiplicador, mas usando mudanças em vez disso. Os modelos Autoregressive Filters (AR) Edit Autoregressive Filters (AR) Edit Autoregressive (AR) são modelos de processo na forma: Onde u (n) é a saída do modelo, x (n) é a entrada do modelo e u (n - m) são anteriores Amostras do valor de saída do modelo. Esses filtros são chamados de autorregressivos porque os valores de saída são calculados com base em regressões dos valores de saída anteriores. Os processos AR podem ser representados por um filtro de todos os pólos. Filtros ARMA Edit Autoregressive Moving-Average (ARMA) filtros são combinações de AR e MA filtros. A saída do filtro é dada como uma combinação linear tanto da entrada ponderada como das amostras de saída ponderadas: os processos ARMA podem ser considerados como um filtro IIR digital, com pólos e zeros. Os filtros AR são preferidos em muitos casos porque podem ser analisados usando as equações de Yule-Walker. Os processos MA e ARMA, por outro lado, podem ser analisados por equações não-lineares complicadas, difíceis de estudar e modelar. Se tivermos um processo AR com coeficientes de peso de toque a (um vetor de a (n), a (n - 1).) Uma entrada de x (n). E uma saída de y (n). Podemos usar as equações de Yule-Walker. Dizemos que x 2 é a variância do sinal de entrada. Tratamos o sinal de dados de entrada como um sinal aleatório, mesmo que seja um sinal determinista, porque não sabemos qual será o valor até que o receba. Podemos expressar as equações de Yule-Walker como: Onde R é a matriz de correlação cruzada da saída do processo E r é a matriz de autocorrelação da saída do processo: Variance Edit Podemos mostrar que: Podemos expressar a variância do sinal de entrada como: Ou , Expandindo e substituindo in para r (0). Podemos relacionar a variância de saída do processo com a variância de entrada: filtro exponencial Esta página descreve a filtragem exponencial, o filtro mais simples e popular. Esta é parte da seção Filtragem que faz parte de um Guia de Detecção e Diagnóstico de Falhas. Visão geral, constante de tempo e equivalente analógico. O filtro mais simples é o filtro exponencial. Possui apenas um parâmetro de sintonia (diferente do intervalo de amostra). Exige o armazenamento de apenas uma variável - a saída anterior. É um filtro IIR (autoregressivo) - os efeitos de uma mudança de entrada se deterioram exponencialmente até que os limites de exibição ou a aritmética do computador ocultem. Em várias disciplinas, o uso deste filtro também é referido como o alívio exponencial de 82208221. Em algumas disciplinas, como a análise de investimentos, o filtro exponencial é chamado de Média de Movimento 8220 Exponencialmente Ponderada8221 (EWMA), ou apenas 8220 de Média de Mudança Exponencial8221 (EMA). Isso abusa a tradicional terminologia média média ARMA 8220moo 8221 da análise de séries temporais, uma vez que não há histórico de entrada que é usado - apenas a entrada atual. É o equivalente de tempo discreto da ordem de ordem 8220 lag8221 comumente usado na modelagem analógica de sistemas de controle de tempo contínuo. Nos circuitos elétricos, um filtro RC (filtro com um resistor e um capacitor) é um atraso de primeira ordem. Ao enfatizar a analogia com os circuitos analógicos, o parâmetro de sintonia única é a constante 8220time8221, geralmente escrita como a letra grega minúscula Tau (). De fato, os valores nos tempos de amostra discretos coincidem exatamente com o atraso de tempo contínuo equivalente com a mesma constante de tempo. A relação entre a implementação digital e a constante de tempo é mostrada nas equações abaixo. Equações de filtro exponencial e inicialização O filtro exponencial é uma combinação ponderada da estimativa anterior (saída) com os dados de entrada mais recentes, com a soma dos pesos iguais a 1 para que a saída corresponda à entrada no estado estacionário. Seguindo a notação de filtro já introduzida: y (k) ay (k-1) (1-a) x (k) onde x (k) é a entrada bruta no passo de tempo ky (k) é a saída filtrada no tempo ka É uma constante entre 0 e 1, normalmente entre 0,8 e 0,99. (A-1) ou a vezes é chamado de constante de deslocamento 82208221. Para sistemas com um passo de tempo fixo T entre amostras, a constante 8220a8221 é calculada e armazenada por conveniência apenas quando o desenvolvedor do aplicativo especifica um novo valor da constante de tempo desejada. Para sistemas com amostragem de dados em intervalos irregulares, a função exponencial acima deve ser usada com cada passo de tempo, onde T é o tempo desde a amostra anterior. A saída do filtro geralmente é inicializada para coincidir com a primeira entrada. À medida que a constante de tempo se aproxima de 0, a vai para zero, portanto, não há filtragem 8211, a saída é igual à nova entrada. À medida que a constante de tempo é muito grande, um aborda 1, de modo que a entrada nova é quase ignorada 8211 filtragem muito pesada. A equação do filtro acima pode ser rearranjada no seguinte preditor-corretor equivalente: Este formulário torna mais evidente que a estimativa variável (saída do filtro) é predita como inalterada da estimativa anterior y (k-1) mais um termo de correção baseado No inesperado 8220innovation8221 - a diferença entre a nova entrada x (k) e a predição y (k-1). Este formulário também é o resultado de derivar o filtro exponencial como um caso especial simples de um filtro de Kalman. Qual é a solução ideal para um problema de estimativa com um determinado conjunto de pressupostos. Etapa de resposta Uma maneira de visualizar a operação do filtro exponencial é traçar sua resposta ao longo do tempo para uma entrada de etapa. Ou seja, começando com a entrada e saída do filtro em 0, o valor de entrada é de repente mudado para 1. Os valores resultantes são traçados abaixo: no gráfico acima, o tempo é dividido pela constante de tempo do filtro tau para que você possa prever com mais facilidade Os resultados para qualquer período de tempo, para qualquer valor da constante de tempo do filtro. Após um tempo igual à constante de tempo, a saída do filtro sobe para 63.21 do seu valor final. Após um tempo igual a 2 constantes de tempo, o valor sobe para 86,47 de seu valor final. As saídas após tempos iguais a 3,4 e 5 constantes de tempo são 95.02, 98.17 e 99.33 do valor final, respectivamente. Uma vez que o filtro é linear, isso significa que essas porcentagens podem ser usadas para qualquer magnitude da mudança de passo, não apenas pelo valor de 1 usado aqui. Embora a resposta gradual em teoria tenha um tempo infinito, do ponto de vista prático, pense no filtro exponencial como 98 a 99 8220done8221 respondendo após um tempo igual a 4 a 5 constantes de tempo de filtro. Variações no filtro exponencial Existe uma variação do filtro exponencial chamado 8220nonlinear exponencial filter8221 Weber, 1980. destinado a pesadamente filtrar o ruído dentro de uma certa amplitude 8220typical8221, mas depois responder mais rapidamente a mudanças maiores. Copyright 2010 - 2013, Greg Stanley Compartilhar esta página:
No comments:
Post a Comment